植物应对盐胁迫的生理机制The Physiological Mechanism of Plants Responding to Salt Stress
李子芳;王玉国;孙守钧;
摘要(Abstract):
盐胁迫是目前制约农作物产量的主要逆境因素之一。从渗透调节、离子区域化、排盐与拒盐、渗调蛋白、Na+/H+逆向转运蛋白和自由基清除系统的酶活性几方面,阐述了植物应对盐胁迫的生理机制。
关键词(KeyWords): 盐胁迫;生理机制;应对措施
基金项目(Foundation):
作者(Author): 李子芳;王玉国;孙守钧;
Email:
DOI: 10.16318/j.cnki.hbnykx.2008.03.002
参考文献(References):
- [1]刘国花.植物抗盐机理研究进展[J].安徽农业科学,2006,34(23):6111-6112.
- [2]Rodriguez HG,Roberts J K M,Jordan WR,et al.Growth,water relations,and accumulation of organic and inorganicsolutes in roots of maize seedlings during salt stress[J].Plant Physiology,1997,113:881-893.
- [3]Volkmar KM,Hu Y and Steppuhn H.Physiological responsesof plants to salinity:a review[J].Canadian Journal ofPlant Science,1998,78:19-27.
- [4]Hajibagheri MA,Yeo A R,Flowers TJ,et al.Salinity re-sistance in Zeamays:fluxes of potassium,sodium and chlo-ride,cytoplasmic concentrations and microsomal membranelipids[J].Plant Cell Environment,1989,12:753-757.
- [5]刘友良,汪良驹.植物对盐胁迫的反应和耐盐性[A].余叔文,汤章城.植物生理与分子生物学[C].北京:科学出版社,1998.752-756.
- [6]利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社,2002.
- [7]Smirnoff C,Thonke B,Popp M.The compatibility of D-pini-tol and 1D-1-o-methyl-mucoinositol with malate dehydrogenaseactivity[J].Botany Acta,1990,103:270-273.
- [8]於丙军,章文华.NaCl对大麦幼苗根系蛋白质和游离氨基酸含量的影响[J].西北植物学报,1997,17(4):439-442.
- [9]赵可夫.植物抗盐生理[M].北京:中国技术出版社,1993.
- [10]Z P Jia,N McCullough,R Martel,et al.Gene amplifica-tion at a locus encoding a putative Na+/H+antiport conferssodium and lithium tolerance in fission yeast[J].EMBO,1992,(11):1631-1640.
- [11]Yamada S,Katsuhara M,Kelly W B,et al.A family oftranscripts encoding water channel proteins:tissuespecificexpression in the common ice plant[J].The Plant Cell,1995,(7):1129-1142.
- [12]Cheeseman JM.Mechanisms of salinity tolerance in plants[J].Plant Physiology,1988,87:547-550.
- [13]王宝山,赵可夫,邹琦,等.作物耐盐性机理及提高作物耐盐性的对策[J].植物学通报,1997,14(S1):25-30.
- [14]毛桂莲,哈新芳,孙婕,等.NaCl胁迫下枸杞愈伤组织可溶性蛋白含量的变化[J].宁夏大学学报,2005,26(1):64-66.
- [15]陶晶,李铁,孙长彬,等.植物盐胁迫研究进展[J].吉林林业科技,2003,32(5):1-7.
- [16]Singh NK,Kuhn D.Molecular cloning of osmotin and regu-lation of its expression by ABA and adaptation to low waterpotential[J].Plant Physiology,1989,90:1096-1101.
- [17]Stockinger EJ,Thomashow M F,Thomashow M F,etal.Arabidopsis thaliana CBF1 encodes an AP2 domain-con-tain-ning transcriptional activate or that binds to the C2 re-peat/DRE,a cis-acting DNAregulatory element that stimu-lates transcription in response to low temperature and waterdeficit[J].Proceedings of the National Academy of Sci-ences,1997,94:1035-1040.
- [18]Vera-Estrella R,Barkla B J,Liliana Garc姫a-Ram姫rez,etal.Salt stress in Thellungiella halophila activates Na+trans-port mechanisms required for salinity tolerance[J].PlantPhysiology,2005,139:1507-1517.
- [19]陈洪.木麻黄抗旱生理生化部分特性的研究[J].福建农业学报,2000,(1):48-54.
- [20]张云华,张宽朝,阮龙,等.植物干旱适应的研究进展[J].安徽农业科学,2005,33(8):1480-1481.
- [21]齐曼.尤努斯,李秀霞,李阳,等.盐胁迫对大果沙枣膜脂过氧化和保护酶活性的影响[J].干旱区研究,2005,22(4):503-507.
- [22]袁朝兴,丁静.水分胁迫对棉花叶片中IAA含量,IAA氧化酶和过氧化酶活性的影响[J].植物生理学报,1990,16(3):179-184.
- [23]全先庆,高文.盐生植物活性氧的酶促清除机制[J].安徽农业科学,2003,31(2):320-322.
- [24]王启明,郑爱珍,吴诗光.干旱胁迫对花荚期大豆叶片保护酶活性和膜脂过氧化作用的影响[J].安徽农业科学,2006,34(8):1528-1530.
- [25]Lu Q,Zheng RL.Membranes lipid peroxi-dation change andlipidremoval deduced by drought and activated oxygen[J].Science in China(Seri C),1996,26:26-29.